N == 444	
成果名称:	加氢机
登记日期:	2022-11-09
完成单位:	电子科技大学中山学院,中山氢元节能环保科技有限公司
完成人员:	孟庆元,梁桥,梁远兴,王桓,吴奇志,温贺平,卢晶琦,马冲,郑子泓,郑锐航,陈进锋,林海斌
研究起止日期:	2018-01-01至2021-10-31
主要应用行业:	交通运输、仓储和邮政业
高新技术领域:	新能源与节能
评价单位:	中科标创(广东)科技项目评价中心
评价日期:	2022-05-12
成果简介:	汽车加氢机项目是以电子科技大学中山学院与中山氢元节能环保科技有限公司合作自主研发的突破性创新氢技术为基础,通过颠覆性、可普及的混氢燃烧技术,让现有化石能源变成更节能、高效、环保的"清洁能源"。 汽车加氢机在独有颠覆性的常温常压储氢技术基础上,通过氢元公司专利还原加氢机,创新地、安全地实现了内燃机混氢辅助燃烧方式,具有节油、提升动力性能和长期保持汽车清洁排放的三大显著效果。这是一种前所未有的内燃机助燃与氢能源应用方法,将在燃油汽车行业开辟一个低成本混氢内燃机新纪元。运用此技术的混氢内燃机在燃烧过程中能避免尾气污染物的生成,可根源性地解决汽车排放问题,为政府提供一条解决数亿台存量燃油车空气污染的新途径。 与笨重、危险的传统车用电解式混氢燃烧设备不同,加氢机产品体积小巧,安装使用方便,高效安全,产品已通过了国家汽车工业产品零部件质量监督检测中心的权威检测,性能显著,安全性获得了中国平安公司的200万产品责任险承保。产品已在市场上小规模试销,赢得了数百位各类型汽车车主、专业车手和渔船的用户高度认可。加氢机技术和产品前景非常广阔,可应用于汽车、工程机械、轮船、发电机和锅炉等设备的混氢燃烧改造优化。 安装加氢机后,驾驶员一般立刻可以感受到汽车动力的提升,持线行驶尾气排放明显改善,其它改善包括:发动机和车身的振动(例如氧传感器故障)会立刻解决、使用之后会发现每箱油的行驶里程变长、火花塞越来越干净。一般来说,使用加氢机几百公里后进行尾气检测时,可以检测到污染物排放几乎可以忽略不计。 我们的汽车加氢机通过国家汽车工业产品零部件质量监督检测中心的权威检测,加氢机可以同步实现动力提升、节油、排放降低三大作用: 1. 油耗平均下降9. 42%; 2. 平均提升动力24.13%; 3. 安装加氢机二十分钟内减少排放10%~40%左右。对于汽车工业来说,这三个方面的改善非常重要,可以为我国的汽车行业发展带来很大的技术提升。 加氢机的成本优势 加氢机正常运行需要消耗液体氢,一瓶500 ML液体氢一般可以使用20000公里,每公里费用大约1分钱,同时却可以节省10%的燃油。